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Abstract. This survey paper aims to present recent trends and development in 
insurance risk management. In particular, we look at the methods and application 
of sophisticated risk control in managing an insurance business. As illustration, 
an investment portfolio of an insurance business is considered and the optimal 
investment strategy is determined to satisfy conditions on solvency. The 
investment strategies are determined using stochastic control methods.  
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1 Introduction 
 
One of the mathematically more exciting areas in actuarial mathematics is 
collective risk theory for non-life insurance. Here, one is concerned with the 
dynamics of the risk process often modeled as  

( )

1

( )
N t

k
k

U t u pt X
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= + −∑  

where  is the initial surplus,  is the premium rate, { (  is a 

Poisson process with intensity 

0u ≥ 0p > ) 0}N t t, ≥
λ,  and { 1 2 (k )}X k N: = , ,... t  is a family of 

independent and identically distributed positive random variables which are 
independent of { (  This classical risk model was first considered by 
Filip Lundberg in 1903. Of major interest is the occurrence of ruin which is defined 
to be the event when surplus becomes negative. Here, we investigate infinite time 
ruin probability defined as  

) 0}N t t, ≥ .

 
 ( ) Pr{ ( ) 0 for some 0}u U t tψ = < ≥ .  (1) 

 
This probability is a commonly used solvency measure for an insurance business. 
One would like to minimize this probability subject to the dynamics of the 
insurance surplus process.  
 
 
2 Stochastic control  
 
Recently, a lot of interest is generated by the use of mathematical tools from 
stochastic control theory in addressing the problem of minimizing the infinite time 
ruin probability defined in (1). It has been noted that many control variables such 
as reinsurance, dividend payment or investment are adjusted dynamically. By 
means of a standard control tool such as the Hamilton-Jacobi-Bellman equation, 
optimal solutions can be characterized and computed, often numerically, and the 
smoothness of the value can be shown. Stochastic control theory methods and 
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applications to finance are covered in the books by Yong [22], Fleming and Soner 
[6], and by Karatzas and Shreve [17]  
 
Consider an insurance company managing the risk in a portfolio. Hipp [8] 
identified a collection of possible business strategies that may be taken by the 
company for risk management and discussed how the optimal strategy, which is 
subject to control variables and business objectives, is determined. Possible control 
variables include reinsurance, investment, volume control, portfolio selection, and 
combinations of all these actions. The optimal strategy is determined dynamically, 
selected and changed at each point in time depending on the risk position of the 
business.  
 
The problem considered here involves finding the best strategy to satisfy particular 
objectives of the insurance business. Once the control variable is selected, the 
stochastic control problem is defined. The control problem is then solved via the 
Hamilton-Jacobi-Bellman (HJB) equation. The solution determines the optimal 
business strategy for the company. Hipp outlined the procedure for defining and 
solving the optimal control problem as follows:  
 
1. Write down the controlled risk process for a constant control and its 

infinitesimal generator.  
 
2. Write down the HJB equation for the stochastic control problem.  
 
3. Show that the equation has a smooth solution satisfying the natural boundary 

conditions of the optimization problem.  
 
4. Use the verification argument to show that the solution of the HJB equation is 

the value function of the optimization problem, and the maximizer in the 
equation determines the optimal strategy in feedback form.  

 
  
3 Minimizing ruin with constant amount of capital 

for investment: an illustration 
 
In this section, we will consider the problem of finding the optimal investment 
strategy that would minimize infinite time ruin probability for a particular 
insurance business. Details of proofs are found in Castillo and Parrocha [5]. 
Examples are also found in the same paper. 

Dynamics of the business surplus 
We model the surplus process of an insurance business whose risk process 

 follows a Cramér-Lundberg process { ( ) 0}R t t, ≥
 

 ( ) ( )dR t cdt dS t= − ,
 
with as the loaded premium rate and { (c ) 0}S t t, ≥  the random claims process 

consisting of a sum of independent, identically distributed claims iX ,  having the 

same distribution as  That is, X .
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and  stands for the number of claims until time t  and is modelled by a 

homogeneous Poisson process with constant intensity 

( )N t
λ.  

 
We consider a scenario where an insurance business is near ruin and the surplus 
or any part of it is not available for investment. A fixed amount A,  independent of 
the current business surplus, is available for investment. The investment portfolio 
consists of a non-risky asset whose value ( )B t  grows like a savings account with 
growth rate ρ,  i.e.  

( ) ( ) 0dB t B t dtρ ρ= , ≥ ,  

and a risky asset whose value ( )Z t  is modeled by a geometric Brownian motion 
 

 ( ) ( ) ( ) ( ) 0 0dZ t Z t dt Z t dW tμ σ μ= + , ≥ ,σ >
 

where { (  is a standard Wiener process.  ) 0}W t t, ≥
 
More precisely, the insurance business has the following investment policy:  
 
• A fixed amount A , independent of the business surplus, will be invested at 

time .  t
 
• A fraction  of ( ) [0 1]b t ∈ , A  will be invested at time t  in the risky asset, the 

remaining part in the non-risky asset.  
 
• The fraction  may change through time depending on which combination 

of risky and non-risky asset minimizes the infinite time ruin probability. 
 

( )b t

The investment return process { ( ) 0}I t t, ≥  from the amount A  is defined by  
 
 ( ) [1 ( )] ( ) ( ) ( )dI t A b t dt Ab t dt Ab t dW tρ μ σ= − + + ,  (2) 

 
and the surplus process { ( ) 0}U t t, ≥  for this business is then seen to be  
 
 ( ) ( ) [1 ( )] ( ) ( ) ( )dU t cdt dS t A b t dt Ab t dt Ab t dW tρ μ σ= − + − + + .        (3) 

 
Clearly,  depends on the composition of the investment portfolio in which the 

fixed amount 

( )U t
A  is invested and is thus influenced by the investment strategy 

  ( )b t .
 
The dynamics of the surplus process on the interval [ ]t t dt, +  can be further 
described as follows:  
 
• A claim of amount X  occurs with probability ( )dt o dtλ + .  
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• No claim occurs with probability 1 ( )dt o dtλ− + .  

• An amount    is received as a premium income.  ( )cdt o dt+
• An amount [1 ( )] ( )A b t dt o dtρ− +  is received as an investment income from 

the non-risky asset.  
• An amount ( ) ( ) ( ) ( )Ab t dt Ab t dW t o dtμ σ+ +  is received as an investment 

income from the risky asset. 

The control problem  
Our initial aim here is to minimize the infinite time ruin probability over all 
possible strategies . The control problem can be stated as follows: 
 

( )b t

 minimize { ( ) 0Pr U t < for 0}t ≥
 ( ) [0 1]b t ∈ ,  

 
subject to  
 

 ( ) ( ) ( ) 0dU t dR t dI t t= + , ≥  
 

0(0)U u= .  
 
The solution to the control problem is found via the HJB equation of the control 
problem. The solution to this equation determines the optimal proportion,  
which is a function of the business surplus at time . The optimal investment 
strategy is defined via the feedback equation  

( )b t∗ ,
t

 ( ) ( ( ))b t b U t∗ ∗=  

where  is the surplus at time t  resulting from the investment strategy 

  

( )U t
{ ( ) }b s s t∗ , < .

The Hamilton-Jacobi-Bellman equation 
We define the probability of non-ruin in the infinite time horizon, also known as 
the probability of survival, for a business with current surplus u  to be  

( ) 1 ( )u uδ ψ=: − .  
Here, we consider two distinct cases over the time interval [ ]t t dt, +   
• there is no claim during the period and the surplus of the business grows by 

, where  is given in (2); and  ( )cdt dI t+ ( )dI t
 
• there is exactly one claim during the period  and the surplus of the company 

reduces by , where ( )dI t X− X  is the random claim size. If there is a claim 

during the period [ , we assume that no premium is received for that 
period.  

]t t dt, +

 
For an arbitrary strategy , at current surplus level ( )b t u,   the probability of 

survival ( )uδ  is determined. Taking expectations over the interval [ ]t t dt, + , 
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 ( ) ( )( ) [ ] (1 ) ( )u dtE u X dt u cdt dI tδ λ δ λ δ= − + − + + .  
 
Applying Ito’s lemma,  

 

( ) ( )

2 2 21 ( ) { [1 ] } ( )
2( ) ( )

A b u c A b Ab u
u u

E u X u

σ δ ρ μ δ
δ δ

λ δ δ

′′ ′⎧ ⎫+ + − +⎪ ⎪= + ⎨ ⎬
⎪ ⎪+ − −⎡ ⎤⎣ ⎦⎩ ⎭

dt     (4) 

is obtained where the proportion invested in the risky asset depends only on the 
current surplus level. For convenience, we denoted this proportion simply as  
keeping in mind that this changes dynamically depending on the current surplus 
level . Letting 

b

u ( )uδ  be the value function for this control problem i.e. the 

supremum over all possible strategies b , equation (4) then leads to  

 

[ ]

2 2 2

[0 1]

1 ( ) { [1 ] } ( )
0 sup 2

( ) ( )b

A b u c A b Ab u

E u X u

σ δ ρ μ δ

λ δ δ

′′ ′

∈ ,

⎧ ⎫+ + − +⎪ ⎪= ,⎨ ⎬
⎪ ⎪+ − −⎩ ⎭

  (5) 

 
where we have the natural conditions  for ( ) 0 ( ) 0u uδ δ′ ′′≥ , ≤ 0 ( ) 0u uδ> , =  

for   and  0u < lim ( ) 1u uδ→∞ = . Furthermore, we assume that ( )uδ  is 

continuous on [0  and twice continuously differentiable on (0),∞ ),∞ .  Equation 
(5) is the HJB equation of the control problem. 

The optimal investment strategy 

Since  the quantity inside the braces in (5) is maximized by  ( ) 0uδ ′′ ≤ ,
 

 2

( ) (
( )

ub )
A u
μ ρ δ
σ δ

′

′′

−
= −%  (6) 

 
and is seen to be a function of the current surplus only. Substituting (6) in (5) 
results in the differential equation  

[ ]
( ) 22

2

( )1( ) ( ) ( ) (
2 ( )

u
)E u X u c A u

u
ρ μ δ

λ δ δ μ δ
σ δ

′
′

′′

⎡ ⎤− ⎣ ⎦− − = − + .  

The solution ( )uδ  to this equation determines the proportion required when the 
current surplus is u . 

The verification theorem 

The following theorem verifies that [0 1]b∈ ,%  is the optimal proportion when the 
current surplus is u . Details of the proof are in Castillo and Parrocha [5]. 
 
Theorem 1. Suppose there exists a solution ( )b uδ %  to the HJB equation (5), having 
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maximizer defined in (6) such that (0) 0bδ > ,%   (0) 0bδ
′ > ,% ( ) 0b uδ =%  for  0u < ,

lim ( ) 1u b uδ→∞ = ,%  and ( )b uδ %  is twice continuously differentiable on { }0u > .  
Then if  is an arbitrary admissible investment strategy, for which the 

corresponding surplus process { (
( )b t

) 0}bU t t, ≥  is defined on 0 t≤ < ∞ , then the 

corresponding non-ruin probability ( )b uδ  for this process with initial surplus  
satisfies  

u

( ) ( ) 0b bu u uδ δ≤ , ≥% .  

Note that , as given in (6), is not necessarily in the interval [0b% 1], . For values of 

 outside the interval, it will be necessary to consider the dynamics of the 

business at the interval endpoints. Observe that if b  is less than 0, then 

b%
% ρ μ>  

and the non-risky asset is more advantageous than the risky asset. In this case, we 

do not invest in the risky asset. A different scenario is achieved when b  is greater 
than 1. This time, the risky asset is more advantageous than the non-risky asset 
and the optimal strategy therefore is to invest the full amount 

%

A  on the risky 
asset. Since (5) is quadratic in b , the supremum value of the quantity inside the 

braces is therefore attained when  0b = ,  1b = ,  or  b b= % .  More specifically, the 

optimal strategy  at when the surplus is  is determined as follows:  ( )b t∗ ( )U t

 2

0 if
( ) ( ( ))( ) if 0 1

( ( ))

1 if

b
U tb t b

A U t

b

μ ρ δ
σ δ

′

∗ ′′

⎧ <
⎪

−⎪= − ≤ ≤⎨
⎪
⎪ > .⎩

%

%

%

0

1

 (7) 

   
As a special case, if the current surplus is zero we do not invest in the risky asset. 
This is evident from the fact that if the current surplus is 0  and most of the 
amount A  is invested in the risky asset then there will be greater chance of 
shortage of surplus to pay out possible early claims. It will follow from (5) that  

[ ]0 ( ) (0) (0 ) (0)

( ) (0) (0)

c A E X

c A

ρ δ λ δ δ

ρ δ λδ

′

′

= + + − −

= + − ,
 

and 
 

 
(0)(0)

c A
λδδ

ρ
′ = .

+
 (8) 

 

The optimal non-ruin probabilities 

The non-ruin probabilities ( )uδ  for cases ( ) 0b t∗ = , ( ) 1b t∗ = , and   ( )b t b∗ = %



STOCHASTIC CONTROL: ALTERNATIVE TOOL IN INSURANCE RISK MANAGEMENT  

are characterized here. Details are in Castillo and Parrocha [5]. Properties of these 
probabilities, denoted by 0 ( )uδ ,  1( )uδ , and ( )b uδ % , respectively, are used in 

proving the existence of a solution to the HJB equation. 
 
Case 1: ( ) 0b t∗ =   

 [0 0 0( ) ( ) ( )u E u u
c A

]Xλδ δ δ
ρ

′ = −
+

− .  (9) 

 
Case 2: ( ) 1b t∗ =   

{ }
1

1 1 1 12 2

2( ) [ ( ) ( )] ( ) ( ) ( )
u

u
u E t t X c A t dt 1 1u

A
δ λ δ δ μ δ δ

σ
′ ′ ′= − − − + +∫ .       (10) 

 

Case 3: ( )b t b∗ = %   
12

2 0

( ) 1
2 [ ( ) ( )] ( ) ( )

( )

(0)

u

b b b
b

b

dt
E t t X c A t

u
c A

ρ μ
σ λ δ δ ρ δ

δ
ρ

λδ

−

′
′

⎧ ⎫−
⎪ ⎪− − − +⎪ ⎪= .⎨ ⎬

+⎪ ⎪+
⎪ ⎪⎩ ⎭

∫
% % %

%

%

(11) 

Existence of a solution to the HJB equation 

Equation (5) determines solutions up to a multiplicative constant, i.e. if ( )uδ  is a 

solution then it follows that ( ) ( )g u uωδ= , where  0ω >   solves (5) with 

boundary condition ( )g ω∞ = .  The proof considers a solution 

using 0(0) (0)g δ= .  

Using the function    instead of ( )g u ( )uδ ,  (11) can be transformed to  
12

2 0

( ) 1
2 [ ( ) ( )] ( ) ( )

( )

(0)

u

b b b
b

b

dt
E g t g t X c A g t

g u
c A

g

ρ μ
σ λ ρ

ρ
λ

−

′
′

⎧ ⎫−
⎪ ⎪− − − +⎪ ⎪= .⎨ ⎬

+⎪ ⎪+
⎪ ⎪⎩ ⎭

∫
% % %

%

%

(12) 

 
We first show that the integral in (12) is finite for a surplus u . The procedure 

starts by showing that    exists on an interval close to zero.  ( )bg u%

 

Express [ ( ) ( )]E g t g t X− −  in terms of . By the definition of the expectation 

with  and 

( )g t′

( )F x ( )f x ,  the distribution and density function of  X  respectively,  
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[ ]

0

0

0

0

[ ( ) ( )] ( ) ( ) ( )

( ) (0) ( ) ( ) (0) ( ) ( )

( ) (0) ( ) ( ) ( )

(0)[1 ( )] 1 ( ) ( )

t

t

t

t

E g t g t X g t g t x f x dx

g t g F t g t F F x g t x dx

g t g F t F t z g z dz

g F t F t z g z dz

′

′

′

− − = − −

= − + − −

= − − −

= − + − − .

∫
∫

∫
∫

 
If the expression  [ (b b )]E g g t X− −% %  in (12) is replaced by a corresponding 

expression based on the formula above, the equation becomes  

 

[ ] [ ]{ }
12

2 0

0

( )
2 (0) 1 ( ) 1 ( ) ( )

( ) ( ) ( )

(0)

u

t

b b

b
b

b

dt

g F t F t z g z dz

g u c A g t

c A
g

ρ μ
σ λ

ρ

ρ
λ

−

′

′
′

⎡ ⎤−
⎢ ⎥⎧ ⎫− + − −⎢ ⎥⎪ ⎪
⎢ ⎥⎨ ⎬

= .⎢ ⎥⎪ ⎪− +⎩ ⎭⎢ ⎥
⎢ ⎥+
+⎢ ⎥
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∫
∫% %

%
%

%

 

 
Define a function  by  ( )k u
 

 

(0) 2( )
( )

bg
c A bg u

k u
u

λ
ρ

′
+ −

= .
%

%
 (13) 

 
Then we have  

(0) ( )bg
c A uk uλ

ρ+ −%   

 

2

12

2 ( )0

1 (0)2 2

0

( )
( ) ( ) (0)

1 ( ) ( )

(0)

b

u

F t
tb

g
c A

b

dt
c A k t g

F t t z t zk t z tdz

c A
g

λ
ρ

ρ μ
σ ρ λ

λ

ρ
λ

−

+

⎡ ⎤−
⎢ ⎥⎧ ⎫+ − +⎢ ⎥⎪ ⎪
⎢ ⎥⎨ ⎬

= ⎡ ⎤⎡ ⎤− − −⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭⎢ ⎥
+⎢ ⎥+⎢ ⎥
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∫

∫ %

%
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Solving for ,  ( )k u

 
2 2 2

2 2

(0) ( )( )( )
(0)( )( ) ( ) ( )

b

b

gl uk u
u g c A l u c A

λ ρ μ
2λ ρ ρ μ σ ρ

−
=

+ − + +
%

%

 (14) 

where the function    is defined by  ( )l u
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 2( )0

1 (0)2 2

0

( )
( ) ( ) (0)

1 ( ) ( )b

u

F t
tb

g
c A

dtl u
c A k t g

t F t t z t zk t z dzλ
ρ

ρ λ

λ +

= .
⎧ ⎫+ −⎪ ⎪
⎨ ⎬

⎡ ⎤⎡ ⎤+ − − −⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

∫

∫ %

%

 

Note that 
2( ) 2

0 0lim lim 2 ( ) 0F t
t tt tf t→ →= = .  Furthermore, the functions    

and    present in the integrand defining the function    are bounded. 
Therefore, the inner integral and the integrand itself are bounded and the following 
statements hold:  

( )F x
( )k u ( )l u

•   0lim ( ) 0u l u→ =

• 
0

( ) 1
0 ( ) lim (lim

u

l u
u u c A k uρ →→ += )   

Taking the limit of both sides of (14) as    and applying the preceding 
properties, we have  

0u →

2 22

2 30

(0) ( )
lim ( )

( )
b

u

g
k u

c A

2λ ρ μ
σ ρ→

−⎡ ⎤ = .⎣ ⎦ +
%

 

 
Equivalently,  

3
20

(0)( )
lim ( )

( )
b

u

g
k u

c A

λ ρ μ

σ ρ→

−
= − .

+
%

 

Now that we know the behavior of  for small values of  u ,  it is possible to 

generate a corresponding behavior for  .  Using (13),  

( )k u
( )bg u′
%

 
(0)

( ) ( )b
b

g
g u k u u

c A
λ

ρ
′ = − .

+
%

%  

As    it follows that  0u →

3
2

(0) (0)( )
( )

( )
b b

b

g g
g u u

c A c A

λ λ ρ μ
ρ σ ρ

′ −
= +

+ +
% %

% .   (15) 

 
Equation (15) gives the derivative of    for small values of u . Since    

is known, the above equation can be integrated to get . Therefore, a solution 

to (12) exists.  

( )bg u% (0)bg %

( )bg u%

 
4 Constraints and limitations 
 
Finding explicit solutions to the Hamilton-Jacobi-Bellman equation is never 
possible in the framework considered here. However, the existence proof renders a 
good numerical method for computations. 
 
  
5 Review of past results 
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Early papers on stochastic control in insurance include Martin-Lof, Brockett and 
Xia, and Browne [3]. Recent applications of stochastic control tools in minimizing 
the probability of ruin include the optimization of reinsurance programs (see Hipp 
and Vogt [13], Hojgaard and Taksar [14], [15], Taksar and Markussen [21] and 
Schmidli [20]), the issuance of new business (see Hipp and Taksar [12]), optimal 
investment strategies (see Hipp and Plum [10], Hipp and Schmidli [11], and Gaier 
et.al [7]), and simultaneous dynamic control of reinsurance and investment (see 
Schmidli [24]).  
 
Other results that have as objective the maximization of cumulative expected 
discounted dividend payouts for various control variables include the papers 
written by Hipp and Plum [9], Asmussen et. al [1], Hojgaard and Taksar [16] and 
Paulsen [19].  
 
6 Suggestions for further work 
 
Most of the papers mentioned above assume the classical compound Poisson 
process in the claims arrival process of an insurance company. from a practical 
point of view, there is a need for a claim arrival process that allow for jumps. As an 
alternative process to generate claims, we can employ the Cox process or a doubly 
stochastic Poisson process. The paper by Hipp and Plum [9] considers an optimal 
control problem where a stochastic discount rate is considered, the stochastic 
model is a time homogeneous finite state Markov process. This can be extended to 
a scenario where discount rates are generated through a Cox process or a doubly 
stochastic Poisson process. Allowing for jumps in the risk process clearly present 
new theoretical and computational issues but would hopefully provide new insight 
and more realistic insurance risk models.  
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